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Abstract 

Technological change and gains in efficiency of renewable power generation technologies are 

to a large extent driven by governmental support. Various policy instruments that can broadly 

be categorized as technology push, demand pull or systemic constitute part of the policy mix 

for renewable energies. Our goal is to gain insights into the influence of this policy mix on the 

intensity and organization of inventive activities for wind power and photovoltaics in 

Germany since the 1980s. We examine the effect of different instruments on the size and 

structure of co-inventor networks based on patent data. Our results indicate notable differences 

between the technologies: the network size for wind power is driven by technology push and 

systemic instruments, while in photovoltaics, demand pull is decisive for network growth. By 

and large, the instruments complement each other and form a consistent mix of policy 

instruments. The structure of the networks is driven by demand pull for both technologies. 

Systemic instruments increase interaction, especially in the wind power network, and are 

complementary to demand pull in fostering collaboration. 

 

Keywords: Renewable Energy, Inventor Network, Policy Mix, Systemic Instrument, 

Technology Push, Demand Pull 
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1 Introduction 

During the last decades, the global capacity for electric power generation by renewable 

sources (excluding hydropower) increased substantially from 85 GW in 2004 to 657 GW in 

2014 (REN21 2015). In Germany, the share of renewable energies in electric power 

production reached 27% in 2014 (BMWi 2015). This development is mainly driven by 

political support and technological progress in the specific technologies. Several studies have 

shown that policies and environmental regulations are important drivers of innovative 

activities in environmental technologies, especially in renewable energies (Johnston et al. 

2010, Grau et al. 2012, Peters et al. 2012, Wangler 2013, Dechezleprêtre and Glachant 2014, 

Costantini et al. 2015a). In particular, inventive activities, largely induced by policies for wind 

power (WP) and photovoltaic (PV) technologies, increased tremendously over the last 

decades. 

Policies have been implemented in an attempt to influence the development and diffusion of 

renewable power generation technologies (RPGT), especially PV and WP, from different 

directions. Demand pull instruments affect innovative activities indirectly by creating demand 

for RPGT, e.g. through feed-in tariffs (FIT) or investment support, and thus increase market 

size. Technology-push instruments directly affect inventive and innovative activities by means 

of R&D subsidies or through performing public R&D in research institutes. Systemic 

instruments, such as cooperative R&D programs, clusters or infrastructure provisions, provide 

support for collaboration and knowledge transfer (Smits and Kuhlmann 2004). The 

combination of these policies constitutes an instrument mix
1
, which needs to be consistent to 

support fully innovative activity.  

With respect to technology push policies, while their influence on investments in R&D is quite 

clear, two important aspects of policy impact are less obvious. First, while demand pull 

instruments increase incentives to invest in production facilities, do they also increase 

incentives for innovation and investment in R&D? And if so, is it an immediate effect or rather 

a consequence of the change in market size and structure? Regarding the second aspect, it is 

common knowledge that internal investments in R&D are only one input in the innovation 

process. External knowledge, captured through technological spillovers, increases the 

knowledge-base of innovative actors and therefore has a positive influence on innovation 

output (Cassiman and Veugelers 2006). Several channels of technological spillovers have been 

                                                      

1 The terms instrument mix and policy mix are not clearly defined and sometimes are used interchangeably. Here 

we rely on the distinction by Rogge and Reichardt (2015), where the instrument mix is an essential part of a broader 

policy mix. 
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identified in the economics of innovation, with personal contact through cooperation or job 

mobility being one of the most important (Singh 2005, Breschi and Lissoni 2009, Edler et al. 

2011). These modes of interaction constitute a network of actors, being either organizations or 

individuals. Networks of knowledge exchange are widely viewed as a central driver for 

inventive activity and it is most likely that they are affected by different policies as well 

(Cantner and Graf 2011, Phelps et al. 2012, Broekel et al. 2015). What we do not know is how 

the mix of policies influences the structure of these networks.  

The aim of this research is to understand how the different instruments of the policy mix as 

well as the consistency of this mix influence the process of invention and innovation in WP 

and PV. We focus on Germany because of the strong political support for renewable energies 

and the high share of German inventors in these specific industries. In addition, Germany 

represented a good fraction of the world market for RPGTs in our observation period (1978–

2012). This is especially true for PV, where Germany represented between 30 and 60 per cent 

of the world market from 2001 to 2010 (IEA 2010). Our approach adds three important 

aspects to the existing literature. First, in addition to the level of inventive activity, we put the 

focus on the structure of relations within the network of collaboration. Second, regarding 

policy instruments, we distinguish between R&D subsidies that are granted to single 

organizations and research grants aimed at fostering collaboration and which can, therefore, be 

regarded as systemic (Smits and Kuhlmann 2004). Third, we test for the consistency of a set of 

instruments within a policy mix. Here, the effects of single policy instruments as well as of 

changes in the policy mix on networks of cooperation are studied by mapping co-inventor 

networks in the PV and WP industries in Germany.  

We use patent applications in WP and PV by German inventors to reconstruct co-inventor 

networks and estimate the effects of several policies as well as their mix on the size and 

structure of these networks. By and large, the size of the networks is increased by technology 

push as well as systemic instruments, whereas demand pull policies seem especially effective 

in PV. The structure of the co-inventor networks is driven by systemic instruments, especially 

in WP. For both technologies, surprisingly, demand pull policies are very important in 

facilitating collaboration. The mix of these instruments shows strong consistency in most 

cases.  

The remainder of this paper is organized as follows: in the following section, we give a short 

review of the literature on innovation networks and innovation policy and derive respective 

hypotheses. In section 3, a short overview of relevant policy instruments in Germany is 

provided. Section 4 describes the data and our empirical approach. Section 5 presents our 

results and discusses their robustness. In the last section, we discuss our findings and 

conclude. 
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2 Policy influence on innovation, collaboration and networks 

2.1 The innovation - network nexus 

Inventive activity, and innovative activity in general, is an interactive process of knowledge 

creation and accumulation (Kline and Rosenberg 1986) in which novelty is created by 

combining knowledge from a diverse set of actors (Kogut and Zander 1992). This knowledge 

re-combination is especially successful in teams that are able to combine diverse sets of 

knowledge (Wuchty et al. 2007, Bercovitz and Feldman 2011). Corresponding networks of 

knowledge transfer and learning constitute one important driver of innovation (Dosi 1988, 

Powell et al. 1996, Ahuja 2000). These networks can be studied by the use of social network 

analysis, which maps actors and their relations in the context of innovation and knowledge 

transfer
2
. Knowledge transfer can be traced through different types of networks, such as co-

authorship networks (e.g. Barabasi et al. 2002, Newman 2004, Moody 2004, Acedo et al. 

2006), co-invention (e.g. Balconi et al. 2004, Fleming and Frenken 2007, Casper 2013), 

university-industry research collaborations (e.g. Balconi et al. 2004, Ponds et al. 2010, Guan 

and Zhao 2013) and industry collaborations (e.g. Ahuja 2000, Hagedoorn 2002, Schilling and 

Phelps 2007).  

The motives to engage in collaborations and to exchange knowledge are manifold (Cantner 

and Graf 2011) and the objective is to increase the inventive and innovative performance. 

Indeed, as empirical research finds, collaboration and networking in R&D in general lead to a 

higher research output than individual R&D activities (e.g. Czarnitzki et al. 2007, Fornahl et 

al. 2011). While there are relatively few studies on the relation between network structure and 

its performance, theoretical as well as empirical results suggest a positive influence of 

increased interaction (Powell and Grodal 2005, Fritsch and Graf 2011, Phelps et al. 2012). The 

speed of information diffusion increases with the connectivity of the network and the 

probability of knowledge transfer between individuals decreases the longer the paths 

connecting them (Singh 2005). Average innovative performance is higher in well-connected 

networks (Fleming et al. 2007). Analyzing these networks helps us to understand how 

knowledge is generated and distributed and the way in which it affects the actors in the 

networks.  

                                                      

2 See Borgatti and Foster (2003) for a general overview of social network analysis and Cantner and Graf (2011) for 

an overview and application in the context of innovation networks. 
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2.2 Policy instruments fostering innovation and collaboration 

2.2.1 Rationale for policy intervention 

Due to the costly and uncertain nature of inventive and innovative activity, policy intervenes 

to enhance and increase research and development activities. Furthermore, there are several 

market failures that hamper inventive and innovative activity, such as knowledge externalities 

or technological lock-ins and path dependencies (Arthur 1989, Griliches 1992, Cecere et al. 

2014).  

Concerning cooperation in R&D, the implied knowledge transfer between the actors and the 

underlying network structures tends to be affected by system failures of complementarity (Do 

the diverse piece of knowledge and hence the actors behind fit together?), reciprocity (Is the 

network based exchange of knowledge governed by trust and reciprocity?) and intermediation 

(Are the eventual network partners aware of all potential cooperation partners?). Answering a 

“no” to any one of these questions leads to a rationale for policy intervention in order (i) to 

reduce the monetary risk of non-complementarity and/or non-reciprocity and (ii) to bear the 

costs of searching for appropriate partners (Carlsson and Jacobsson 1997, Klein-Woolthuis et 

al. 2005, Cantner et al. 2011). In this context, various types of policies may have different 

influences on network formation, thereby affecting the rate of knowledge transfer and 

consequently influencing the speed at which technologies are developed. For example, R&D 

subsidies are frequently and increasingly awarded only if actors collaborate on these projects 

to overcome such failures and incentivize joint research efforts (Broekel and Graf 2012).  

Furthermore, environmentally friendly innovations generate positive externalities for society 

by reducing emissions and resource extraction that cannot be fully internalized. Therefore, 

these eco-innovations are subject to a double or multiple externality problem (Rennings 2000, 

Jaffe et al. 2005, Cecere et al. 2014).  

To deal with these externalities, and to directly or indirectly foster inventive activity various 

instruments originating from different policy fields can be implemented. The main fields are 

innovation policy, where policy needs to address the underinvestment in R&D due to 

spillovers and non-excludability of new knowledge, path dependency, lock-ins and network 

effects; environmental policy, which deals with the negative external effects concerning 

emissions from conventional technologies; and climate policy which focuses especially on the 

adverse effects of greenhouse gas emissions.
3
 A broad set of instruments from these fields 

supports and induces environmental innovations to overcome these externalities and increases 

                                                      

3 Of course, other policy fields also influence inventive activity, such as energy policy in general, industrial policy 

or trade policy.  
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innovation and the diffusion of clean technologies (Jaffe et al. 2002, Kemp and Pontoglio 

2011, Costantini and Crespi 2013, Groba and Breitschopf 2013). These sets of instruments can 

be conventionally classified in technology push and demand pull instruments. Furthermore, 

there is an increasing attention towards instruments affecting the above mentioned failures 

related to the systemic nature of the innovation process (Smits and Kuhlmann 2004, 

Wieczorek and Hekkert 2012), so called systemic instruments.  

On this basis, we are interested in how the mix of these instruments influences inventive 

activities in environmentally friendly technologies. Taking into account the importance of 

cooperation in those activities, we focus on networks of inventive activity and formulate 

hypotheses regarding their size and structure. The former reflects the attractiveness of the 

system in terms of the number of inventive actors, while the structure is of particular 

importance for the potential knowledge transfer within networks (Cowan and Jonard 2004, 

Schilling and Phelps 2007).  

 

2.2.2 Technology push instruments 

There are several measures directly targeted at overcoming the above mentioned externalities 

and enhancing inventive activity. The most prominent instruments directly influencing 

inventors’ activity are R&D subsidies or other means, such as tax incentives, to reduce the 

private costs of R&D activities. In his seminal report, Bush (1945) addressed the necessity to 

fund directly R&D activities to increase the knowledge stock and to increase research 

cooperation between actors. Since then, there has been a long debate about the effectiveness of 

direct R&D support and its benefits for inventive activity (cf. David et al. 2000, García-

Quevedo 2004). Growing empirical evidence indicates that direct R&D funding increases 

inventive output (e.g. Czarnitzki and Hussinger 2004, Alecke et al. 2012), despite frequent 

concerns regarding crowding-out of private R&D investments (see Zúñiga-Vicente et al. 

(2014) for a review).  

Several empirical studies have analyzed the effect of direct R&D subsidies in environmentally 

friendly technologies, especially renewable energies. Most of them use patent data as an 

output of the R&D process and estimate how R&D subsidies influence patenting activity. 

Johnston et al (2010) estimate for a panel of 25 countries that public R&D expenditure fosters 

inventive activity, especially in WP and PV. Wangler (2013) as well as Böhringer et al. (2014) 

focus their analyses on inventive activity in Germany and find that public R&D expenditure 

has a positive effect on inventive activity. Costantini et al. (2015a) find no positive effect for 

mature biofuel technologies, but a positive effect for less mature technologies that are still in 

the early stage of development. Costantini et al. (2015b) show for a panel of 23 OECD 

countries that technology push policies increase inventive performance in energy efficiency 
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technologies. However, Nesta et al. (2014) find no significant effect of public R&D 

expenditure on green patents.  

With our focus on collaboration and networking in R&D, we extend these analyses by looking 

at the effects of technology push instruments on inventor networks. First, since patents are the 

basis for the size of the co-inventor network, we expect that technology push instruments 

foster inventive activity and thereby increase the size of the network.  

H1a: Technology push instruments increase the size of the co-inventor network 

 

Second, concerning the structure of inventor networks, we do not expect an effect of 

individual funding. Technology push instruments are not designed to influence connectivity 

within the network, since by its very nature individual R&D funding does not aim at 

encouraging cooperation. In addition, inventors working for private companies may be 

concerned about secrecy and may prefer not to cooperate to inhibit an outflow of knowledge. 

This leads us to the following hypothesis: 

H1b: Technology push instruments have no effect on cooperation within the co-inventor 

network 

 

2.2.3 Systemic instruments  

Systemic instruments are designed to provide support at the systemic level of inventive 

activity and reduce system failures (Chaminade and Edquist 2006, Wieczorek and Hekkert 

2012). This includes the provision of infrastructure, especially to facilitate learning and 

knowledge exchange, to enhance cooperation, for example by cluster initiatives, or to foster 

cooperation between inventive actors (Smits and Kuhlmann 2004). The aim of such policies is 

to connect different actors, such as firms, universities and research institutes, to create a 

network of knowledge transfer, encourage learning processes and open up possibilities of 

resource and capability sharing. The most common systemic instrument is subsidizing 

research collaboration with the requirement to involve different actors in a R&D project. Such 

cooperative grants lead to higher inventive output compared to individual grants (e.g. 

Czarnitzki et al. 2007, Fornahl et al. 2011).  

Concerning the effect of systemic instruments on inventive activity, Branstetter and 

Sakakibara (1998, 2002), Czarnitzki and Fier (2003) and Czarnitzki et al. (2007) find that 

firms that participate in publicly funded R&D consortia have a higher inventive output than 

non-funded or non-participating firms. Fornahl et al. (2011) find that R&D funding for 

German biotech firms has only a minor effect on inventive output, while collaborative R&D 

funding increase inventive output to some extent. Falck et al. (2010) show that a cluster 
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initiative in Bavaria, Germany, increased the amount of innovation and eased the access to 

foreign knowledge for participating firms. Indirect support of networking within a Japanese 

cluster policy has been shown to be effective in increasing innovative output (Nishimura and 

Okamuro 2011).  

In view of this evidence and parallel to the analysis of technology push instruments, we are 

interested in the effects of systemic instruments on co-inventor networks. Since many types of 

systemic instruments provide financial support for joint R&D activity, they should increase 

inventive activity similar to technology push instruments. Furthermore, by providing 

incentives to form cooperation with (often) previously unknown partners, they could increase 

the size of the network by attracting new actors to these technologies. Hence, we suggest the 

following hypothesis:   

H2a: Systemic instruments increase the size of the co-inventor network 

 

The instruments at the systemic level are especially designed to increase the connectivity 

inside the network. They attract new actors to the network and integrate them by providing 

incentives to establish linkages. Even though evidence on the link between systemic 

instruments and network formation is scarce, some studies find positive effects of 

collaborative R&D funding or cluster policies on collaboration (Giuliani and Pietrobelli 2011, 

Nishimura and Okamuro 2011, Cantner et al. 2014). In view of this evidence, we propose the 

following hypothesis: 

H2b: Systemic instruments increase cooperation inside the co-inventor network 

 

2.2.4 Demand pull instruments  

The notion of a demand effect on inventive and innovative activity was introduced by 

Schmookler (1962, 1966), who postulates that markets with high expected profitability 

provide incentives to engage in inventive activity. This relationship has been widely discussed 

in the literature (e.g. Mowery and Rosenberg 1979, Kleinknecht and Verspagen 1990) with 

recent empirical evidence indicating that market demand induces inventive output in general 

(Peters et al. 2012) and especially fosters process innovations (Fontana and Guerzoni 2008).  

Environmentally friendly technologies compete with incumbent technologies that have cost-

advantages due to negative externalities and path-dependencies and are therefore left with sub-

optimal market shares from a societal perspective. To establish demand for these technologies, 

a protected niche marked is required that allows the technologies to emerge and improve 

(Kemp et al. 1998, Nill and Kemp 2009). Demand pull instruments can create such niche 

markets and provide incentives for firms to enter the market or to innovate and expand 
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production capacity. With revenues generated on this market, firms can grow to appropriate 

economies of scale and learning effects that allow the development of more efficient 

production processes or investment in new machinery (Arrow 1962, Peters et al. 2012, 

Lindman and Söderholm 2012); thereby they reduce production costs and generate revenues, 

which can be re-invested in R&D (Nemet 2009, Hoppmann et al. 2013). Different demand 

inducing policies can be thought of, such as public procurement, demand subsidies, 

deployment policies, and fiscal incentives, or soft instruments such as standards and labels or 

initiatives to reduce information asymmetries (Edler 2010).  

The effect of niche markets for environmentally friendly technologies has been observed in 

case studies and broader empirical settings. For energy efficiency technologies, Costantini et 

al (2015b) find that a general energy tax, which induces demand for energy efficiency 

applications, increase inventive output. In a case study on PV module producers, Hoppmann et 

al. (2013) show that an increase in market size also increases the innovative investments, with 

gained revenues being partly reinvested. Nemet (2009) finds the opposite effects for WP in 

California, where demand policies did not trigger non-incremental inventions. In an 

econometric framework, Johnston et al (2010) show that feed-in tariffs have only a significant 

effect for solar technologies and a negative effect for WP on inventive output, while 

certificates and obligations increase inventions in general. Costantini et al. (2015a) show that 

demand induces innovation and, especially for less-mature technologies, price-based demand 

instruments enhance invention more than quantity-based ones. Peters et al. (2012) consider 

domestic and foreign demand policies for PV and find that both have an effect on inventive 

output. Wangler (2013) finds that an increase in market size has a positive effect on inventive 

activity in Germany.  

As stated above, the evidence for the effect of demand pull instruments on invention is 

inconclusive and apparently technology dependent. We assume that demand pull instruments 

may have an indirect effect on the size of co-inventor networks. First and foremost, they 

establish markets and/or increase market size. Furthermore, with a larger market, more actors 

will see an opportunity to serve that market. Hence, with inventive activity being a 

prerequisite for survival in the market, due to the increased competition, indirectly more 

inventions are induced. Hence, for the size of inventor networks we suggest: 

H3a: Demand pull instruments increase the size of the co-inventor network 

 

Demand pull instruments increase the number of actors, but we have no good reason to expect 

that they change cooperative behavior within the network. While an increasing number of 

actors positively affects the number of potential partners, it might at the same time increase the 
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fear of unintended knowledge spillovers if competition becomes fiercer. Therefore we 

hypothesize for the structure of inventor networks: 

H3b: Demand pull instruments have no effect on cooperation in the co-inventor network 

 

2.3 Consistency of the Instrument Mix  

All the above mentioned instruments seem relevant for increased inventive activity and are 

frequently implemented simultaneously, thereby constituting an instrument mix for 

innovation. In the literature, it is acknowledged for quite some time that such a mix of 

instruments is necessary to increase inventive activity, especially for eco-innovations (Mowery 

and Rosenberg 1979, Kemp et al. 1992).  

Recently, the interaction, interdependency and possible coordination failures within the 

instrument mix for innovation have caught the attention of researchers. Several theoretical 

contributions argue that the optimal reduction of emissions is achieved by emission control 

policies combined with the direct support of inventive activity (see Lehmann 2012 for a 

survey). Concerning the interaction of implemented instruments to support inventive activity, 

the evidence is scarce.
4
 Buen (2006) shows for WP in Denmark and Norway that supply and 

demand subsidies should be implemented at the same time and be predictable over time to 

create an environment in which actors can successfully engage in inventive activity. Bérubé 

and Mohnen (2009) show for a sample of Canadian firms that the presence of tax credits as 

well as R&D subsidies increase inventive output more than tax credits alone. Guerzoni and 

Raiteri (2015) find for a sample of European firms that, if supply and demand side policies 

positively interact, innovation expenditures are highest.  

Various conceptualizations of a broader policy mix have been proposed. Within the innovation 

system approach, Borrás and Edquist (2013) suggest how an instrument mix with systemic 

characteristics should be designed. Flanagan et al. (2011) emphasize several dimensions 

(policy space, governance space, geographical space and time) of innovation policy mix 

interactions on various levels. A recent conceptualization of the policy mix is proposed by 

Rogge and Reichardt (2015), who argue that the instrument mix is part of a wider policy mix 

for innovation. This policy mix consists of different elements that capture the policy strategy 

to define certain objectives, the instruments used to achieve the strategies’ objectives, and the 

                                                      

4 There is distinct stream of literature focusing on instrument mixes in environmental policy in general (e.g. OECD 

2007) and the interaction of the EU ETS and the diffusion policies for renewable energies and their emission 

reduction in particular (e.g. Sorrell et al. 2003, del Río 2007, del Río 2010, Lehmann 2012).  

Jena Economic Research Papers 2014 - 034



 

11 

mix of these instruments. These elements furthermore have certain characteristics. A 

particularly important one is the consistency of the elements in the policy mix that includes, 

among others, the consistency between the instruments and their interaction.  

According to Rogge and Reichardt (2015), the consistency of the instrument mix can be 

assessed by interaction analysis and can have three degrees of interaction: strong, if the 

instruments reinforce each other, weak, if the interaction is neutral, and inconsistent if the 

interaction effect is negative. They argue that due to the conflicting objectives, perfect 

consistency may not be possible (Flanagan et al. 2011), and may sometimes not even be 

desirable (Quitzow 2015). Costantini et al (2015b) show how an inconsistent mix of 

instruments, characterized by an excess of implemented instruments, can deter inventive 

performance in energy efficiency technologies. They find that if too many policies are 

implemented, complexity increases and inconsistencies emerge that reduce inventive 

performance. Guerzoni and Raiteri (2015) find strong consistency for the interaction between 

public procurement and direct subsidies. Inventive expenditures of firms are found to be 

higher if the instruments interact compared with the sum of the individual effects of both 

instruments.  

Based on the previous empirical findings, we argue that market demand must be present to 

encourage inventors to engage in R&D activity. Here, we expect that demand pull interacts 

with technology push instruments and enhances the size of the network. Both policies create 

incentives: demand pull instruments promise customers for products based on each technology 

and technology push instruments lower barriers to the pursuit of R&D activities. Expecting 

strong consistency, we can formulate the following hypothesis: 

H4a: The size of the co-inventor network is positively affected by the interaction of demand 

pull and technology push instruments 

 

A similar line of reasoning can be put forward regarding the structure of the network. Market 

demand is required for actors to engage in R&D activity. Systemic instruments provide 

incentives to collaborate on R&D, especially between previously unknown partners. We 

expect that the interaction between the two instruments increases the connectivity inside the 

network and therefore shows strong consistency.  

H4b: Collaboration within the co-inventor network is positively affected by the interaction of 

demand pull and systemic instruments  
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3 Policies for renewable energy in Germany  

The development of RPGT and especially WP and PV received broader attention in the 1970s 

in reaction to the oil crisis and due to the growing awareness of resource depletion and 

environmental concerns in society. Governmental support of R&D in these technologies 

started in Germany in 1974 (Lauber and Mez 2004). This development has been accompanied 

and pushed by various policy initiatives. They are designed to aim at technological 

improvement and cost competitiveness directly via subsidizing R&D activities leading to cost 

reduction, or indirectly via feed-in-tariffs, i.e. guaranteeing a cost covering price that induces 

demand and allows reaping scale and learning economies by increased production. The 

rationale for such policies is seen in the initially low competitiveness of the new compared to 

incumbent technologies as well as in the external effects associated with these infant 

technologies (Painuly 2001). 

While both technologies were at an infant stage when policy support in Germany started, there 

are noteworthy differences between them. Windmills as a source of mechanical energy have 

long been known and even though modern WP installations differ greatly from traditional 

windmills, the concept of using wind as a source of energy was familiar (see Shepherd 1994 

for a historical review). Furthermore, many auxiliary technologies that were used to develop 

wind turbines could be adapted from other fields (e.g. wind tunnels in aviation), which may 

ease technological progress. The first photovoltaic cell was only introduced in 1954 and 

provided a new way of utilizing solar energy. While there was not much previous knowledge 

to build on, photovoltaic applications benefitted from simultaneous developments within the 

emerging semiconductor industry (Sze 1981). This leads to differences in efficiencies and 

production costs, which partly explains political support patterns described below. 

3.1 Technology push instruments 

For RPGTs in Germany, the main technology push instrument is R&D funding by the German 

federal government. Federal R&D spending is documented in the German Förderkatalog 

(2014), a database containing all federal granted research projects from 1968 until today (see 

Broekel and Graf 2012 for a detailed description of the database). We identify research 

projects relevant for the technologies under concern by conducting a keyword search
5
. 

                                                      

5 The keywords used are: “wind”, “pv”, “photovoltai*”, “solar”. We remove projects not directly relevant for 

inventive activity, such as energy related educational programs, as well as projects that focus on upstream 

technologies, but not on WP and PV directly, manually from the dataset. Furthermore, funding for demand pull 

instruments, especially the 100/250 MW wind program, are removed as well.  
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Overall, funding can be divided into funding for individual research projects at an institute or a 

company and collaborative research projects. We separate these two kinds of funding since 

they have different effects and select for the technology push instrument only projects 

attributed to one recipient. We collect the data from 1978 until 2011, which covers 259 

research projects with a total amount of €283.4 million in WP and 590 projects with a total of 

€934.9 million in PV (in 1995 Euros).
6
  

Overall funding as well as its breakdown into individual and cooperative funding is depicted 

in figure 1. Regarding the respective overall funds, we observe similar patterns for both 

technologies with an early first maximum around 1980 (WP) and 1990 (PV), followed by a 

decline that lasts for several years and a sharp increase during the 2000s.  

Individual funding in both technologies follows the same pattern most of the years but the 

upsurge during the last years is not as pronounced as in overall funding due to a policy shift 

towards cooperative funding. However, between the two technologies, there are also some 

notable differences with respect to the timing and the amount of funding. Spending for PV 

reaches its maximum ten years later than WP which reflect differences in the maturity of these 

technologies. The Government also seems to perceive a greater need for funding or puts higher 

expectations in PV, since the maximum level of spending on PV is about five times higher 

than on WP. In general, spending for PV is more volatile than for WP.  

 

Figure 1: Federal funding of research projects in wind power and photovoltaics.  

Source: Own calculation based on Förderkatalog (2014). 

                                                      

6 The project grants are equally distributed over the project duration to account for the length of the project. This 

means, if €1 million is granted to a research project running for five years, we allocate €0.2 million per year. 
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3.2 Systemic instruments 

Systemic instruments support the research infrastructure by facilitating learning and 

knowledge exchange, enhancing cooperation, or fostering cooperation between inventive 

actors (Smits and Kuhlmann 2004). In Germany, institutional funding for research institutes 

such as the Fraunhofer Institute for Solar Energy Systems ISE or the establishment of 

dedicated chairs at universities are examples of this type of instrument. Furthermore, 

cooperative research projects (“Verbundforschung”) are widely used to connect public actors 

with partners from industry and also among each other. Cluster policies such as the funding of 

the SolarValley fall into this category as well.  

We select grants for cooperative research also from the Förderkatalog (2014).
7
 There are 216 

cooperative research projects for PV and 55 for WP in the timespan from 1978 until 2011. The 

amount of funding for the projects was €35.1 million for WP and €344.2 million for PV, 

respectively (see figure 1). Cooperative research grants were introduced in WP and PV at the 

beginning of the 1980s, and especially in PV it had a substantial and increasing share in the 

following years with a short period of decline during the early 1990s. By 2011, more than half 

of overall funding in PV was granted to cooperative projects. In WP, the systemic instrument 

was not frequently applied until 2000. Afterwards, cooperative funding increased and by 2011 

it accounted for one third of total funding in WP. 

3.3 Demand pull instruments 

In the beginning of the development of RPGT in the 1970s, demand pull instruments did not 

play a major role. Only some local demonstration programs were in place, trying to overcome 

the cost disadvantages especially faced by PV (Jacobsson and Lauber 2006). These 

agreements, most of the time between municipal services and the installation owner, granted a 

payment per electricity unit in relation to production costs. With the Electricity Feed-in Law 

(“Stromeinspeisungsgesetz”), the first German FIT, a profound demand side policy was 

introduced in 1991. This national law granted renewable energy producers a fixed feed-in 

tariff of 90% of the regular customer’s electricity price (computed on the price two years 

before the granting year) for WP and PV. This fixed price permitted RE producers to sell their 

electricity to the grid operators, which were obliged to purchase. This removed market and 

price uncertainty for RPGT. The incentives were sufficient for WP to diffuse, but did not 

create high demand for PV, due to the low FIT compared to the high system costs of PV 

                                                      

7 We identify collaborative grants by the term “Verbundforschung” in the project title, which is specifically used to 

describe these cooperative grants. This also includes funding for clusters. 
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(Jacobsson and Lauber 2006). This overarching policy was continued by the Renewable 

Energy Sources Act (“Erneuerbare Energien Gesetz”, EEG) in 2000, which extended the FIT 

and distinguished further between different kinds of technologies and increased the support for 

PV and other technologies (see Hoppmann et al. 2014 for the development of the EEG, 

especially for PV). The EEG was amended several times to differentiate further between 

technologies and to adjust for unexpected cost reductions.  

Besides these main instruments, which created a stable environment for investments in RPGT, 

other demand inducing policies were in place. For WP, the 100/250 MW wind program 

supported the diffusion of WP as well. The program started in 1989 and granted the owner of a 

wind turbine either an investment support or an additional payment for each unit of electricity 

feed into the grid. This could be combined with the Electricity Feed-in Law and created strong 

incentives to invest in WP. In 1996, the program ended, covering about 1,500 installations 

with 350 MW installed capacity (see Durstewitz et al. 2000 for an evaluation). 

Similar demand supporting programs were in place for PV. In 1991, the 1,000 roof program 

was enacted, which provided PV installations support of 70% of installation costs. Until 1994, 

2,250 installations were installed and created the biggest market for PV installations in Europe 

(Kiefer and Hoffmann 1994). In 1999, a second program to support the diffusion of PV was 

introduced, the 100,000 roof program. The program also granted investment subsidies, but 

only up to 30% of the investment costs, and provided interest reduced loans for PV 

installations. The program was a big success and was amended to keep up with the demand for 

support (Bruns et al. 2009). Eventually, the program ended in 2003 and was integrated in the 

amended version of the EEG in 2004. An overview of the most important demand pull 

instruments and their amendments is provided in figure 2. 

 

Figure 2: Main demand pull instruments for wind power and photovoltaics in Germany.  

Source: Own elaboration based on Bruns et al. (2009). 
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4 Data and empirical strategy 

To test our hypotheses, we run a set of OLS time series regressions, which estimate the effect 

of different of policy instruments and their mix on the development of the size and the 

structure of co-inventor networks. In the following, we explain how the networks for WP and 

PV are derived from patent data, continue with the policy instruments and control variables 

(see table 1), and describe our empirical strategy.  

4.1 Dependent variables: co-inventor networks 

4.1.1 Reconstructing co-inventor networks from patent data 

We use patent data to identify cooperation at the inventor level. The dataset for the analysis is 

retrieved from the Worldwide Patent Statistical Database (PATSTAT) (EPO 2014). Subsets 

for WP and PV are extracted by a combination of technology specific IPC (International 

Patent Classification) classes and keywords (see appendix 1 for the selection criteria). We 

consider all priority applications in the timespan from 1980 to 2011. The dataset consists of 

3,985 patents for WP and 3,763 patents for PV invented by German inventors. A patent is 

selected if at least one of its inventors resides in Germany. After extensive manual cleaning of 

the dataset, controlling for patent applicant, address and year of application, the final dataset 

consists of 3,603 unique WP and 4,761 PV inventors. The development of the patents and 

inventors over time can be seen in figure 3.  

We use a social network approach to reconstruct and analyze the structure and evolution of the 

undirected inventor networks in the two technologies. For the reconstruction of inventor 

networks, we link inventors via joint patents. If two or more inventors are named on the same 

patent (co-invention), we assume that they have collaborated and exchanged knowledge 

during the process of invention (Breschi and Lissoni 2004). The technology specific networks 

are constructed using 3-year moving windows to account for persistence, while also allowing 

for decay of the linkages (Fleming et al., 2007; Schilling and Phelps, 2007). These moving 

windows help to map the invention process, because the patent is just the point in time when 

the result occurs, while the inventive process itself is continuous and interaction between the 

actors takes place before filing the patent and might persist afterwards.  

4.1.2 Development of network structures over time 

Based on the inventor networks, different properties can be observed concerning their size and 

structure (figure 3). Looking at the size of the networks based on the underlying patent data, 

we can observe a steady increase in patents over time, rather exponentially during the last 

years. The nodes in the network, which represent the individual inventors, show a similar 

pattern. The edges in the network, which represent the number of connections between the 
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inventors, increase as well. Average team size, i.e. the number of inventors per patent, shows a 

significant difference between the technologies. The average team in PV is larger than in WP 

by about one inventor per patent throughout most of the periods. The gap becomes smaller 

during the last observations, but still accounts for 0.5. This could partly be caused by the 

existence of very successful individual inventors in WP, for example, the founder of the 

German wind turbine company Enercon, Aloys Wobben, who filed about 3.5% of all WP 

patents in the observed time period on his own.  

The change of the network structure over time can be described by statistics that measure 

characteristics of the network as a whole or describe the individual position of network actors. 

A broad overview of these measurements and detailed calculations can be found in 

Wasserman and Faust (1994). Concerning network structure, the mean degree, which is the 

average number of edges per node, shows an upward development, indicating an increase in 

cooperative behavior over time. However, in both networks, density, i.e. the share of active 

links in all possible links, decreases over time. Since density is a function of network size, this 

fact is not surprising, because the size of the network, in terms of nodes, is increasing over 

time as well. In the first years of observation, density is much higher in the PV-network than 

in the WP-network, but, by the end of our observation period, both are equal. Degree 

centralization, which accounts for the concentration of edges across the nodes, is in both 

technologies quite volatile but has no trend, indicating that no actor is important or dominates 

the network. The largest component in the network, which represents the largest group of 

connected inventors, has a surprisingly low share and is quite volatile in both technologies. 

However, in both networks, the share of the largest component increases over time, indicating 

an increased potential for knowledge diffusion in the network.  
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Figure 3: Structural properties of co-inventor networks in wind power and photovoltaics.  

 

4.1.3 Operationalization  

For the econometric analysis we use two network measures as dependent variables. The size of 

the network is given by the number of nodes, i.e. the number of distinct inventors, which 

indicates the intensity and variety of inventive activity in the respective fields. Since the time 
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series for WP and PV show an exponential trend, we use the first difference of network size, 

∆ Nodes.  

We use Mean Degree, calculated as the average number of collaboration partners, as a very 

simple and easy to interpret measure of network structure. Since it is independent of network 

size, it is superior to density and many other measures of network structure in the context of 

our study.  

4.2 Policy Variables 

The operationalization of technology push (TP) and systemic instruments (SYS) is 

straightforward, since they are provided as monetary values (see sections 3.1 and 3.2). We 

aggregate annual funding to three-year moving windows to account for the duration of the 

inventive process, with some projects taking more time to produce patentable output than 

others. We take first differences of the three-year moving windows to estimate the effect of 

changes in the funding policy.  

To operationalize demand pull instruments (DP), we use the logarithm of annually installed 

capacity in Germany in MW per year. Since neither of the technologies analyzed was cost 

competitive with fossil fuel technologies during the observed time period, we assume that 

investments in installed capacity are only undertaken because of an effective demand pull 

instrument (Klaassen et al. 2005, Peters et al. 2012, Wangler 2013, Dechezleprêtre and 

Glachant 2014). Data on installed capacity is taken from Bergek and Jacobsson (2003) for the 

period before 1990 for WP and for PV from Jacobsson et al. (2004) and for 1990 onwards 

from BMWi (2015) for both technologies (see figure 4). This approach, however, does not 

differentiate between different possible causes for an increase in installed capacity. 
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Figure 4: Annually installed capacity in wind power and photovoltaics in MW. 

Data sources: Bergek and Jacobsson (2003), Jacobsson et al. (2004) and BMWi (2015)  

 

4.3 Control Variables 

We control for other factors than policy measures that could influence inventive activity in 

RPGT. To account for a general increasing trend in patenting, we collect all patents filed at the 

German patent office and take the first differences (∆ Patents). We also account for the 

overall, increasing trend in cooperation (Wuchty et al. 2007) by calculating mean Team Size 

for all German patents
8
. Furthermore, we use inflation adjusted changes in the crude oil price 

index (∆ Oilprice) provided by the Federal Statistical Office of Germany (Destatis 2014) to 

account for an induced innovation effect by increasing fuel prices (see Popp 2002). We also 

control for the size of (potential) Export Markets and thereby also capture effects of foreign 

policies (Peters et al. 2012, Dechezleprêtre and Glachant 2014, Costantini et al. 2015b). To be 

precise, we take the logarithm of the global annual installations of WP in MW and the global 

annual production of PV in MW (Earth Policy Institute 2014a, b) and subtract the respective 

new installed capacities in Germany. 

 

                                                      

8 We use mean team size instead of mean degree since the latter is impossible to calculate due to the large number 

of German inventors and the related issues with name disambiguation. We also calculated the mean degree of a co-

inventor network based on a random sample of 5% of all German patents. The correlation between the two is 0.99 

so that we believe this is a viable proxy. 
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Table 1: Variables and descriptive statistics 

Variable Description RPGT Min. Median Mean Max. SD Observations 

        (Period) 

∆ Nodes First differences 

of the number of 

distinct inventors 

in the network 

WP -32.00 15.00 46.10 271.00 80.70 29 

PV -45.00 29.00 64.62 364.00 109.75 29 

       (1981-1983 until 2009-

2011) 

Mean 

Degree 

Average number 

of cooperations in 

the co-inventor 

network 

WP 0.14 0.87 1.11 2.62 0.76 30 

PV 1.63 2.30 2.44 3.68 0.54 30 

       (1980-1982 until 2009-

2011) 

TP+SYS First differences 

of overall R&D 

funding 

WP -5.97 -0.45 0.23 10.58 4.06 31 

 PV -17.30 5.00 5.49 38.25 12.91 31 

      (1979-1981 until 2009-

2011) 

TP First differences 

of individual 

R&D funding 

WP -5.81 -0.80 -0.33 7.94 3.35 31 

PV -15.90 1.24 1.63 19.38 10.01 31 

       (1979-1981 until 2009-

2011) 

SYS First differences 

of collaborative 

R&D funding 

WP -0.69 0.00 0.56 3.70 1.15 31 

PV -7.47 1.85 3.86 28.86 8.84 31 

       (1979-1981 until 2009-

2011) 

DP Logarithm of 

annually installed 

capacity in MW 

WP 0.00 6.06 4.58 8.08 3.20 35 

PV 0.00 1.10 2.88 8.94 3.27 35 

       (1978 until 2012) 

Export 

Market 

Logarithm of 

annually installed 

capacity (WP) / 

production (PV) 

outside Germany 

in MW 

WP 0.00 6.67 6.55 10.66 2.92 35 

PV 1.25 4.34 5.03 10.30 2.44 35 

       (1978 until 2012) 

∆ Oilprice First differences 

in oil price 

 -42.64 -0.79 1.60 27.84 14.74 31 

       (1981 until 2011) 

∆ Patents First differences 

in the overall 

number of patents 

in Germany 

 -52.68 -0.57 12.70 77.73 33.57 29 

       (1981-1983 until 2009-

2011) 

Team Size Average number 

of inventors per 

patent in 

Germany 

 1.73 2.05 2.03 2.27 0.20 30 

       (1980-1982 until 2009-

2011) 

 

4.4 Econometric approach 

4.4.1 Estimation strategy 

We use OLS time series regressions to estimate the effect of the different policy instruments 

and their interaction on the size and structure of the network. We estimate ten different models 
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to test the effect of the policy instruments on the two dependent variables in two technologies. 

The general functional form is as follows: 

∆ 𝑁𝑜𝑑𝑒𝑠𝑡

𝑀𝑒𝑎𝑛 𝐷𝑒𝑔𝑟𝑒𝑒𝑡
} = 𝛼 + 𝜷 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠𝑡−𝒙 + 𝜸 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 +  𝜀 

We add variables to see their effect and apply different lags, denoted by t-x (see 4.4.2 for a 

discussion of the lag structure). The first three models test whether funding in general affects 

inventive activity, policies is just the aggregate of TP and SYS, and DP is included with 

different lags to replicate the setup of previous studies (e.g. Johnstone et al. 2010, Peters et al. 

2012, Nesta et al. 2014).  

The fourth and all subsequent models use TP and SYS individually. In models 5 and 7, we 

again include DP with the respective lag structure. In models 6 and 8, we account for the 

export market instead of domestic demand. Due to problems of multicollinearity, we cannot 

include DP and export market in the same model.  

We explicitly model the instrument mix in the last two models by including an interaction 

term between single instruments. The interaction term is supposed to grasp the type of 

consistency of the instrument mix. Model 9 introduces an interaction between TP and DP, 

while the last model employs an interaction between DP and SYS. 

The correlation between the variables is not critical (see appendix 2) except for Team Size, DP 

and Export Market, which can therefore not be used in the same models. Also, the variance 

inflation factors show no critical values, except for the interaction term in model 10.  

According to the Breusch-Pagan test (Breusch and Pagan 1979), we have heteroscedasticity in 

the error terms in most models. In addition, the Durban-Watson test (Fox 2008) reveals 

autocorrelation in the error terms. To account for this, we use heteroscedasticity and 

autocorrelation consistent covariance matrices (HAC) (Newey and West 1987, Andrews 1991) 

to calculate standard errors. 

Due to the time series nature of our variables, we apply a unit root test (Elliott et al. 1996) to 

test for non-stationarity. We cannot reject non-stationary in the dependent variables and DP. 

For the dependent variables, we provide alternative specifications that are stationary in section 

5.3. They show that non-stationarity does not bias our general results. While it would be 

possible to transform the DP variable in a way that is stationary (e.g. the growth rate of newly 

installed capacity), we would lose a lot of valuable information. Apart from that, we believe 

that the explosive growth in demand is what is particular about this instrument and is the basis 

for its effectiveness. Due to its very nature, it is not possible to model the effect of the DP 

variable as a one-time shock to the time series. However, this has to be considered while 

interpreting the results.  
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4.4.2 Lag structures 

Analyzing the influence of a specific policy instrument on inventive activity requires 

considering time lags between the introduction of the instrument and the realization of an 

inventive output (see Hall et al. 1986 for a general discussion). Were this not the case, the 

policy instrument would rather influence the propensity to patent already existing inventions, 

instead of incentivizing inventive activity (Scherer 1983).  

Various lag structures have been proposed in the context of environmental innovations and 

RPGTs in particular. Brunnermeier and Cohen (2003) use no lag structure to estimate the 

effect of R&D expenditures on inventive output in environmental innovation, yet their results 

are robust to one and two years lags as well. Johnstone et al. (2010) also use no lags in their 

analysis. Peters et al. (2012) use one, three and five year lags for R&D spending, but abandon 

lags since their initial model provides the best fit. Wangler (2013) employs no lag for public 

R&D spending and a positive lag for installed capacity. A positive lag means that actors either 

anticipate future policies or have expectations regarding the future impact of existing policies 

and adjust their inventive activities accordingly. Böhringer et al. (2014) use a one year lag for 

R&D investments and no lag for installed capacity.  

We decided to lag TP and SYS by one year. Most DP instruments were intensively discussed 

in the public before introduction (e.g. Hoppmann et al. 2014), so that the actors could 

anticipate policies well before their introduction and change their inventive behavior 

(anticipation effect). Therefore, for DP, we introduce a foresight of one year, which has also 

been used by Wangler (2013). In addition, a long term effect of a DP instrument, such as a 

FIT, would be generation of profits, which can be invested in inventive activity that shows 

success only some years later (resource effect).
9
 Therefore, we assume four years to be a 

reasonable time span for new research projects to result in patentable output. For the 

interaction terms, we consider only the resource effect and lag DP by four years
10

. While 

thinking about optimal lag structures, one has to consider that any specification of a lag 

structure is subject to noise. This is especially so in the case of inventive activities and 

somewhat accounted for by our reconstruction of networks with three-year moving windows. 

It is therefore unlikely that we find a single lag structure which clearly outperforms all other 

options. We provide robustness checks accounting for a series of lag structures in section 5.3. 

                                                      

9 Nemet (2009) as well as Hoppmann et al. (2013) provide detailed evidence for the existence of both types of 

effects. 

10 We also considered interactions between TP and DP with the one year negative lag (anticipation), but overall, 

these models had a poorer fit.  
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5 Results: policy impact on network size and structure 

5.1 Size of the network  

The size of the network is given by the number of nodes, which represent individual inventors 

and could be interpreted as the attractiveness of the research field.
11

  

In the first three models for WP (table 2), we observe that an increase in overall funding 

(TP+SYS) is associated with an increase in the number of nodes in the network. More effective 

DP policies, however, do not seem to be important for the stimulation of inventive activities, 

independent of the lag structure. The differential impact of the instrument mix on innovation 

in different technologies becomes clear by comparing the results for WP with those for PV 

(table 3). Network size in PV is largely explained by effective DP, whereas we find almost no 

effect of funding. Comparing the two different lags shows that the resource effect provides a 

better model fit than the anticipation effect. 

The individual effects of TP and SYS in model 4 are positive and significant in WP, while in 

PV only SYS increases network size. Also, the overall fit of the model is nearly zero for PV, 

indicating that R&D subsidies do not contribute significantly to the technological 

development. This confirms the hypotheses H1a and H2a for WP but not for PV. Including 

DP with different lags in models 5 and 7 shows similar coefficients as in models 2 and 3 but 

the anticipation effect for DP turns significant in WP. In PV, TP becomes significant, 

indicating that conventional R&D funding needs to be accompanied by DP. Here we can 

confirm the hypothesis H3a for PV but not for WP.  

Comparing the models that differentiate between TP and SYS with the ones that do not shows 

that the model fit improves especially in WP but to a lesser extent in PV, which is due to the 

dominance of DP instruments in PV. In models 6 and 8, we account for the fact that firms in 

both industries are engaged on international markets and include the size of export markets. 

Again, the anticipation effect and the resource effect are strong predictors of network size in 

PV, but only the anticipation effect proves significant in WP. It is worth noting that including 

international demand instead of national demand (DP) leads to a better model fit in WP. In 

PV, comparing the models with anticipation effect (5 and 6), explanatory power is higher 

when we control for the export market. When it comes to the resource effect (models 7 and 8), 

the domestic market (DP) has a higher explanatory power than the export market.  

                                                      

11 The results for changes in the number of patents instead of nodes are very similar. Respective results are 

available upon request. 
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The interaction of different instruments, especially between TP and DP, are used to evaluate 

the complementarity between the instruments, i.e. the consistency of the instrument mix. 

Acknowledging this interrelation between policies strongly improves the model fit in all cases 

analyzed. The interaction between TP and DP is significant for both technologies, which 

indicates that both policy instruments complement each other in attracting inventive activities, 

which is in line with hypothesis H4a. We also find a significant positive effect of the 

interaction between DP and SYS in model 10 in WP, while in PV, this effect is negative. This 

negative effect in PV could indicate that the combination of demand pull and systemic 

instruments mainly strengthens already existing actors and therefore makes entry into the 

industry more difficult. 
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Table 2: OLS-Regression results for ∆ Nodes Wind Power as dependent variable 

 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 

Intercept 54.736*** 8.405 19.304 32.572*** -12.751 -94.680 6.017 -13.541 -25.186 14.563 

 
(13.012) (28.261) (18.528) (11.711) (26.028) (58.940) (20.045) (35.632) (18.438) (13.691) 

(TP + SYS)t-1 19.437*** 15.259** 14.030** 
       

 
(5.105) (5.883) (6.106) 

       
TPt-1    

13.084*** 9.040* 8.101** 9.387* 10.410** -3.642 10.208** 

    
(4.228) (4.713) (3.877) (4.729) (4.200) (3.025) (3.893) 

SYSt-1    
45.549*** 41.183*** 29.082** 37.966*** 36.583*** 38.120*** -17.656 

    
(9.704) (11.228) (13.472) (13.391) (12.705) (11.944) (12.936) 

DPt+1  
8.820 

  
8.670* 

     

  
(5.458) 

  
(4.503) 

     
DPt-4   

8.540 
   

7.040 
 

9.836** 2.869 

   
(5.425) 

   
(4.919) 

 
(3.746) (3.508) 

DPt-4 × TPt-1         
3.168*** 

 

         
(0.792) 

 
DPt-4 × SYSt-1          

9.839*** 

          
(2.337) 

∆ Oilpricet-1 -0.033 -0.400 -0.544 -0.296 -0.654 -0.992 -0.686 -0.430 -0.370 -1.400** 

 
(0.707) (0.578) (0.559) (0.972) (0.867) (0.619) (0.819) (0.917) (0.686) (0.642) 

∆ Patentst -0.067 -0.391 -0.300 0.246 -0.076 0.064 0.016 0.133 0.388 0.168 

 
(0.278) (0.398) (0.373) (0.251) (0.308) (0.287) (0.324) (0.236) (0.385) (0.237) 

Export Markett+1      
17.740* 

    

      
(8.949) 

    
Export Markett-4        

8.117 
  

        
(5.742) 

  
Adj. R² 0.627 0.662 0.674 0.697 0.735 0.771 0.727 0.720 0.809 0.822 

Obs. 29 29 29 29 29 29 29 29 29 29 

Max. VIF 1.134 1.942 2.095 1.742 1.942 2.696 2.157 2.224 4.313 9.970 

F-Value 16.663 14.692 15.453 17.115 16.537 19.837 15.924 15.382 20.737 22.483 

AIC 314.087 312.041 310.993 308.829 305.718 301.510 306.571 307.346 296.9732 294.970 

Robust standard errors (HAC) in parenthesis. Sig. at *** 0.01, ** 0.05, * 0.1 level 
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Table 3: OLS-Regression results for ∆ Nodes Photovoltaics as dependent variable 

   
 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 

Intercept 33.258 -63.286** -49.289** 19.979 -61.190* -213.692*** -44.431* 
-

197.662*** 
-25.034* -68.097*** 

 
(23.620) (30.442) (22.496) (32.867) (32.659) (59.256) (21.624) (66.072) (12.127) (19.628) 

(TP + SYS)t-1 4.644 4.627** 3.257*** 
       

 
(3.339) (1.808) (1.044) 

       
TPt-1    

4.255 4.888** 4.122** 3.480** 5.095* 1.501* 4.794*** 

    
(2.824) (2.323) (1.858) (1.298) (2.515) (0.831) (1.349) 

SYSt-1    
7.558*** 2.664 0.029 0.678 1.786 1.960 7.818** 

    
(2.095) (2.559) (2.811) (2.459) (2.662) (2.188) (3.350) 

DPt+1  
25.363*** 

  
27.162*** 

     

  
(6.950) 

  
(8.993) 

     
DPt-4   

39.487*** 
   

42.552*** 
 

29.595*** 49.017*** 

   
(6.901) 

   
(8.649) 

 
(5.784) (7.510) 

DPt-4 × TPt-1         
2.344*** 

 

         
(0.519) 

 
DPt-4 × SYSt-1          

-1.303*** 

          
(0.420) 

∆ Oilprice t-1 1.168 -0.867 -1.101* 1.328 -1.119 -1.446** -1.412* -0.937 -0.742 -1.229 

 
(1.214) (0.552) (0.545) (1.170) (0.714) (0.649) (0.777) (0.875) (0.961) (0.745) 

∆ Patentst 0.936 1.589** 1.631*** 1.301** 1.389* 1.043* 1.376*** 1.070* 1.247*** 1.872*** 

 
(0.700) (0.768) (0.528) (0.577) (0.759) (0.544) (0.431) (0.623) (0.242) (0.553) 

Export Markett+1      
46.048*** 

    

      
(10.980) 

    
Export Markett-4        

54.108*** 
  

        
(17.020) 

  
Adj. R² 0.046 0.575 0.725 0.045 0.572 0.677 0.737 0.518 0.826 0.796 

Obs. 29 29 29 29 29 29 29 29 29 29 

Max. VIF 2.064 2.146 2.138 2.444 2.445 2.698 2.579 2.580 2.683 7.131 

F-Value 1.451 10.472 19.436 1.327 8.475 12.760 16.701 7.020 23.097 19.261 

AIC 359.120 336.488 323.887 359.980 337.480 329.261 323.327 340.902 312.131 316.617 

Robust standard errors (HAC) in parenthesis. Sig. at  *** 0.01, ** 0.05, * 0.1 level 
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5.2 Structure of the network  

To analyze changes in the structure of the networks, we focus on the mean degree, which 

accounts for the intensity of collaboration. In this section, we test the effect of different policy 

instruments on the mean degree.  

The first three models show in the case of WP (table 4) and PV (table 5) that both an increase 

of overall R&D funding (TP + SYS) and of DP increase the mean degree. From models 1 and 

4, we can infer that changes in the network structures are not independent from the overall 

trend towards increased collaboration but controlling for this trend still leaves room for 

unexplained variation of the mean degree.  

Models 4 to 8 differentiate between TP and SYS. As in the regressions in the previous section, 

this increases the explanatory power of our models only for WP but not for PV. The results for 

WP strongly support our hypotheses H1b and H2b, since SYS is always positive and 

significant, while TP shows no influence on the mean degree. In PV, these relationships are 

not robust and strongly depend on the model specification. Overall, demand plays an 

important role in both technologies for stronger interaction in R&D. These findings are 

contrary to our expectations in H3b, where we assumed that DP has no effect on network 

structure.   

The joint effect of SYS and DP in model 10 is positive and significant for both technologies. 

This supports hypothesis H4b, indicating that these instruments complement each other and 

form a consistent policy mix fostering collaboration in R&D. Concerning the interaction of TP 

and DP in model 9, we find no significant effect in WP but a significant negative one for PV. 

This result is somehow puzzling, but may indicate that an increase in TP provides companies 

with sufficient resources to perform R&D on their own, thereby reducing the incentive to 

engage in R&D collaboration.  
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Table 4: OLS-Regression results for Mean Degree Wind Power as dependent variable 
   

 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 

Intercept -4.411*** 0.336*** 0.405*** -3.754*** 0.220 -1.071*** 0.350*** 0.192 0.335*** 0.400*** 

 
(0.725) (0.026) (0.025) (0.768) (0.197) (0.186) (0.091) (0.263) (0.091) (0.080) 

(TP + SYS)t-1 0.065*** 0.096** 0.061** 
       

 
(0.023) (0.036) (0.027) 

       
TPt-1    

0.012 0.023 0.014 0.010 0.034 -0.007 0.014 

    
(0.020) (0.028) (0.014) (0.018) (0.036) (0.017) (0.014) 

SYSt-1    
0.350*** 0.437*** 0.193*** 0.336*** 0.319*** 0.317*** 0.061 

    
(0.045) (0.065) (0.033) (0.046) (0.103) (0.051) (0.077) 

DPt+1  
0.147*** 

  
0.131*** 

     

  
(0.024) 

  
(0.034) 

     
DPt-4   

0.175*** 
   

0.149*** 
 

0.151*** 0.131*** 

   
(0.014) 

   
(0.021) 

 
(0.020) (0.021) 

DPt-4 × TPt-1         
0.006 

 

         
(0.005) 

 
DPt-4 × SYSt-1          

0.046*** 

          
(0.013) 

∆ Oilpricet-1 0.000 0.002 0.000 0.002 0.004 0.000 0.002 0.008 0.003 -0.001 

 
(0.003) (0.003) (0.003) (0.004) (0.006) (0.002) (0.004) (0.007) (0.003) (0.003) 

Team Sizet 2.729*** 
  

2.322*** 
      

 
(0.389) 

  
(0.375) 

      
Export Markett+1      

0.284*** 
    

      
(0.026) 

    
Export Markett-4        

0.133*** 
  

        
(0.048) 

  
Adj. R² 0.765 0.609 0.791 0.902 0.825 0.943 0.918 0.745 0.920 0.940 

Obs. 30 30 30 30 30 30 30 30 30 30 

Max. VIF 1.238 1.115 1.257 1.344 1.253 1.820 1.365 1.642 2.201 9.725 

F-Value 32.443 16.071 37.475 67.669 35.172 121.080 82.087 22.175 68.116 91.142 

AIC 30.803 46.040 27.339 5.395 22.769 -10.920 0.048 34.065 -0.115 -8.348 

Robust standard errors (HAC) in parenthesis. Sig. at  *** 0.01, ** 0.05, * 0.1 level 
  

Jena Economic Research Papers 2014 - 034



 

30 

Table 5: OLS-Regression results for Mean Degree Photovoltaics as dependent variable 

     Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 

Intercept -1.617 1.941*** 2.049*** -1.500 1.938*** 1.300*** 2.048*** 1.378*** 2.001*** 2.075*** 

 
(1.030) (0.119) (0.096) (0.979) (0.095) (0.261) (0.097) (0.316) (0.090) (0.093) 

(TP + SYS)t-1 0.023*** 0.013* 0.007 
       

 
(0.007) (0.006) (0.006) 

       
TPt-1    

0.021** 0.013* 0.012 0.007 0.017* 0.013* 0.006 

    
(0.009) (0.007) (0.008) (0.007) (0.009) (0.007) (0.007) 

SYSt-1    
0.026*** 0.011 0.007 0.005 0.014** 0.000 -0.009 

    
(0.006) (0.008) (0.007) (0.008) (0.007) (0.006) (0.012) 

DPt+1  
0.130*** 

  
0.132*** 

     

  
(0.023) 

  
(0.020) 

     
DPt-4   

0.183*** 
   

0.186*** 
 

0.225*** 0.171*** 

   
(0.031) 

   
(0.034) 

 
(0.033) (0.029) 

DPt-4 × TPt-1         
-0.007*** 

 

         
(0.002) 

 
DPt-4 × SYSt-1          

0.003* 

          
(0.002) 

∆ Oilpricet-1 0.004 0.003 0.003 0.004 0.002 0.003 0.002 0.006 0.001 0.002 

 
(0.003) (0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0.004) (0.003) (0.002) 

Team Sizet 1.947*** 
  

1.886*** 
      

 
(0.490) 

  
(0.463) 

      
Export Markett+1      

0.197*** 
    

      
(0.040) 

    
Export Markett-4        

0.231*** 
  

        
(0.063) 

  
Adj. R² 0.667 0.786 0.807 0.657 0.779 0.758 0.800 0.663 0.829 0.809 

Obs. 30 30 30 30 30 30 30 30 30 30 

Max. VIF 1.070 1.078 1.164 1.252 1.343 1.422 1.435 1.334 2.441 4.568 

F-Value 20.339 36.604 41.391 14.866 26.552 23.679 29.997 15.253 29.179 25.614 

AIC 20.476 7.120 4.105 22.193 8.978 11.728 5.982 21.647 2.001 5.327 

Robust standard errors (HAC) in parenthesis. Sig. at  *** 0.01, ** 0.05, * 0.1 level 
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5.3 Robustness checks 

There might be concerns about endogeneity, especially reverse causality in the models 

explaining the size of the networks. It could be possible that policy makers react to an 

exogenous growth of the number of inventors by investing more into the specific 

technologies,
12

 or that both phenomena are influenced by an unobserved variable that is 

exogenous to our model. We partly account for this issue by imposing a lag structure on our 

models, which implies a distinct direction of causality (Nesta et al. 2014). In addition, we 

check if any of our explanatory variables are correlated with the error term of our regressions, 

which could indicate endogeneity issues (Hayashi 2000). This is not the case in any of our 

models. An instrumental variables approach has been put forward as a method to deal with 

possible endogeneity (Angrist et al. 1996, Brynjolfsson et al. 2009, Peters et al. 2012, Nesta et 

al. 2014). Peters et al. (2012) use the funding for one technology as an instrument for the other 

technology. However, due to the low number of observations, instrumental variable 

estimations are not reliable in our case (Crespo-Tenorio and Montgomery 2013).  

Concerning the imposed lag structure, we test the sensitivity of our results to different lags by 

estimating all possible lag combinations on the intervals [0, 3] for TP and SYS and [-1, 4] for 

DP (see appendix 3). In general, the estimated coefficients imply that our results would also 

hold for most other tested lag structures even though they do not always provide the best 

model fit. 

With respect to the data’s time series nature, non-stationarity might be an issue. All variables 

except Mean Degree and Team Size enter our regressions as first differences
13

. Our dependent 

variables are non-stationarity and we create alternative, stationary dependent variables to 

investigate whether the non-stationarity biases our results: for ∆ Nodes, we divide the number 

of inventors in each technology by the overall number of German inventors and take the first 

difference. This represents change in the share of inventors in this technology in all German 

inventors and captures the changing attractiveness of the respective technology relative to all 

technologies. We divide the Mean Degree by the Team Size of all German patents to capture 

the propensity to cooperate in WP and PV relative to all technologies in Germany.  

 

                                                      

12 The reverse causality issue for mean degree is not that likely, since the cooperation intensity has only since 

recently been on the policy maker’s agenda.  

13 Recall that DP is operationalized as the log of annual installments, which is the first difference of cumulative 

installments. 
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Table 6: OLS-regression robustness results with new dependent variables 

     ∆ Share of Inventors Relative Mean Degree 

  Wind power Photovoltaics Wind power Photovoltaics 

 Model 5 Model 7 Model 5 Model 7 Model 5 Model 7 Model 5 Model 7 

Intercept -0.002 0.000 -0.003 -0.002 0.206** 0.239*** -0.054* -0.038 

 
(0.002) (0.002) (0.002) (0.001) (0.079) (0.044) (0.032) (0.026) 

TPt-1 0.000* 0.000* 0.000** 0.000* 0.000 0.000 0.000 0.000 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

SYS t-1 0.000*** 0.000*** 0.000 0.000 0.000*** 0.000*** 0.000 0.000 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

DPt+1 0.001*** 
 

0.002*** 
 

0.039*** 
 

0.016** 
 

 
(0.000) 

 
(0.001) 

 
(0.013) 

 
(0.007) 

 
DPt-4  

0.001 
 

0.004*** 
 

0.046*** 
 

0.020** 

  
(0.000) 

 
(0.001) 

 
(0.009) 

 
(0.009) 

∆ Oilpricet-1 0.000 0.000 0.000 0.000 0.001 0.000 -0.001 -0.001 

 
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002) (0.001) (0.001) 

Adj. R² 0.799 0.784 0.550 0.693 0.791 0.869 0.156 0.122 

Obs. 29 29 29 29 30 30 30 30 

Max. VIF 1.697 1.814 1.427 1.525 1.253 1.365 1.427 1.525 

F-Value 28.853 26.454 9.550 16.781 28.490 48.991 2.291 1.974 

AIC -236.157 -234.088 -197.466 -208.540 -32.906 -46.821 -48.472 -47.341 

∆ share of inventors is the first difference of the ratio between the number of inventors in each technology and the overall number of German 

inventors. Relative Mean Degree is the ratio of Mean Degree in the respective technology and Team Size in Germany. 

Robust standard errors (HAC) in parenthesis. Sig. at  *** 0.01, ** 0.05, * 0.1 level 
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We re-estimate models 5 and 7 with our altered dependent variables. Models 5 and 7 were 

chosen because these models include all our explanatory variables with no interactions.
14

 

Table 6 shows that the results change very little, only in model 5 for Relative Mean Degree in 

PV is the TP variable insignificant and, for both models, the overall model fit is drastically 

reduced. However, since the new dependent variables do not have exactly the same meaning 

as the original ones, we consider these small deviations unproblematic. These results indicate 

that the non-stationarity of our dependent variable does not bias our general findings. 

6 Discussion and Conclusions 

This study attempts to shed light on the influence of the German policy mix with its 

constituting instruments and their consistency on the size and the structure of co-inventor 

networks in wind power (WP) and photovoltaics (PV) in Germany. We go beyond previous 

and related studies by focusing explicitly on co-inventor networks and not merely on the 

number of patents (e.g. Johnstone et al. 2010, Wangler 2013, Böhringer et al. 2014, Nesta et 

al. 2014). Such networks of knowledge transfer and learning have been identified as important 

drivers of innovation (Dosi 1988, Powell et al. 1996, Ahuja 2000). Several theoretical as well 

as empirical studies suggest a positive influence of increased interaction on innovation 

performance (Powell and Grodal 2005, Fritsch and Graf 2011, Phelps et al. 2012). Our main 

contribution in this respect is to analyze the effects of policy on interaction within co-inventor 

networks. For this purpose, we refer to the existing literature on technology push and demand 

pull policies, and extend the analysis by accounting for systemic instruments, specifically 

designed to foster cooperation and knowledge transfer. In addition, we provide insights 

regarding the consistency of the policy mix, by looking at the interaction of these policy 

instruments (Rogge and Reichardt 2015). While most related studies are based on a panel of 

several countries, we focus solely on Germany. The reason for this choice of study design lies 

in the availability of more fine grained funding data that allows for the identification of the 

systemic instrument. 

Despite this different approach, our general results are in line with previous studies on policy 

effects of push and pull instruments in RPGT. As in Johnstone et al. (2010), Wangler (2013) 

and Böhringer et al. (2014), we find positive effects of technology push on innovation 

activities (contrary to the findings by Nesta et al. 2014). Similar to Wangler (2013) and Peters 

et al. (2012) and partly in line with Johnstone et al. (2010), we show that demand pull policies 

                                                      

14 We do not include ∆ Patents and Team Size in these regressions. Both are control variables meant to account for 

the general development in Germany, which are part of the dependent variables. 
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play an important role in facilitating inventive activity. However, the effect is technology 

dependent, and seems to be very influential in PV but less pronounced in WP (also in line with 

Johnstone et al 2010).  

In particular, we find that the network size, i.e. the number of actors active in the technology, 

is positively affected by technology push and systemic instruments in WP, whereas in PV it is 

only technology push which shows an effect. Demand pull instruments, such as the EEG, have 

a strong positive effect in PV in creating resources for inventive activity (resource effect), but 

also by allowing the actors to anticipate policy effects, e.g. in terms of upcoming market 

opportunities for their products. In the case of WP, this anticipation effect seems to be 

relatively more important. This phenomenon has also been discussed by Nemet (2009) and 

Hoppman et al. (2013) and seems to be a relevant force for technological development. 

Considering the international context, export market dynamics are closely correlated with 

domestic demand in Germany. Such an apparently aligned behavior might be a response to 

international CO2 reduction targets or result from international policy learning. In line with 

Peters et al. (2012) and Dechezleprêtre and Glachant (2014) these export market dynamics 

also play a role in WP and PV, where actors anticipate market opportunities abroad and 

increase their inventive activities. In the case of PV, our results indicate a resource effect via 

export markets. 

Our hypothesis regarding the influence of systemic instruments on the structure of the 

networks finds support only in the case of WP, whereas in PV, the results are inconclusive. As 

expected, technology push policies do not increase cooperation in WP at all, while for PV, the 

effect is ambiguous. Concerning the effect of demand pull instruments on collaboration, we 

find a strong positive influence in both technologies. This is quite surprising, since demand 

pull policies are not designed to support collaboration. One possible explanation could be the 

presence of an increased number of potential cooperation partners with complementary 

knowledge and capabilities. In a similar vein, the increase in market size might allow for more 

specialization, thereby increasing the benefits of cooperation when combining different sets of 

knowledge (Cantner and Meder 2007).  

Concerning the policy mix, we find that push and pull instruments work hand in hand in 

increasing network size, while pull and systemic instruments together spur cooperation. These 

results indicate the necessity of market demand to reap the full potential of technology push 

and systemic instruments. Our findings indicate strong consistency of the analyzed 

instruments in the policy mix. However, we also find some inconsistencies. Pull and systemic 

instruments interact in a way that seems detrimental to network size in PV. Apparently, this 

combination of instruments favors existing actors rather than attracting new ones. In a similar 

fashion, a combination of push and pull instruments works against collaboration in PV and 

rather favors individual research activities. Therefore, our results question the relevance of 
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technology push to enhance cooperation. Since this instrument does not aim at fostering 

cooperation, but rather provides sufficient resources to conduct R&D without cooperation, this 

seems quite plausible. Apparently, we look at two, at least partly conflicting measures of 

system performance, since it might be difficult to sustain the level of average cooperation 

intensity in times of fast network growth. There might well be a tradeoff between policy goals 

that shows in the above mentioned inconsistencies, which is not necessarily to be judged 

negative (Quitzow 2015).  

Based on our empirical findings, we can derive several suggestions for policy: First, 

implementing a mix of policies goes beyond a single instrument in fostering innovation, at 

least in infant technologies. Second, demand inducing policies should be designed to create 

resources for inventive actors to enlarge their research activities, but also provide stable 

perspectives regarding future market opportunities. Third, cooperation activity should be 

supported by specific instruments and existing instruments should be evaluated concerning 

their effect on cooperation – some policies affect cooperation, even though it is not their 

objective. Fourth, all these policies form a mix that ought to be consistent in providing 

incentives to engage in R&D and especially collaborative activities as well as in supporting 

market creation. However, our results are technology specific. These differences may be 

related to the technologies’ state of development, their relative competitiveness, market 

dynamics and differences concerning the nature of these technologies, which need to be 

considered when implementing a certain policy instrument within a policy mix (Huenteler et 

al. 2015).  

From a research perspective, we contribute the following insights: First, we bring together the 

literature on innovation networks and policy support in the context of environmental 

innovation. This helps to understand better the relationship between policy instruments and 

their effect on invention networks and the knowledge transfer in these networks. Second, we 

can show that certain policies do not only increase inventive activity, but also alter the 

underlying network structure. The effects of policies on network structure are still poorly 

understood and we provide first insights as to the types of policies that actually have an effect. 

Third, we demonstrate that public R&D funding can have different effects if it contains 

systemic components that successfully support network formation. Finally, with respect to the 

policy mix for innovation, we provide a simple approach to operationalize aspects of its 

consistency, which gives insights about how different policy instruments interact.  

However, this study leaves room for improvement and extension. We consider only the 

situation in Germany; extending the scope of the analysis for a panel of countries and/or a 

broader set of technologies may lead to further insights on the effect of the different policy 

instruments and their interaction. Unfortunately, more fine grained data that would allow us to 

identify funding as technology push or systemic is, to our knowledge, not readily available for 
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other countries. Concerning the systemic instruments, institutional funding to public research 

institutes and universities is not included in our analysis, neither are non-monetary policy 

instruments such as changes in patent law, the education system, grid access or other market 

design instruments, which need to be taken into account to understand fully the effect of 

systemic instruments. Moreover, the role of potential export markets could be explored in 

more detail by accounting for interdependencies between national RPGT policies. Also, the 

consistency of the policy mix needs further empirical investigation. Here, more empirical 

applications in different countries and technologies are required to generalize our findings. 

From a methodological point of view, using instrumental variables would be desirable, which 

would be possible with a panel of countries.   

Acknowledgement 

This paper was written as part of the research project GRETCHEN (The impact of the German 

policy mix on technological and structural change in renewable power generation 

technologies, www.project-gretchen.de), which is funded by the German Ministry of 

Education and Research (BMBF) within its funding priority “Economics of Climate Change” 

under the funding label Econ-C-026. We gratefully acknowledge this support. Johannes 

Herrmann also thanks the German Research Foundation (DFG) for financial support within 

the DFG-GRK 1411 “The Economics of Innovative Change”. We would like to thank the 

GRETCHEN team members and especially Karoline Rogge for the valuable discussions. We 

are grateful to Jens J. Krüger and participants of the 13
th
 IAEE European Conference in 

Düsseldorf, the International Conference on Policy Mixes in Environmental and Conservation 

Policies in Leipzig, the 15
th
 International Conference of the International Joseph A. 

Schumpeter Society in Jena, as well as the seminar in Turin for discussions of earlier versions 

of this paper. We would also like to thank Moritz Böhmeke-Schwafert for his valuable 

research assistance. Three anonymous referees greatly helped to improve the paper. The usual 

caveats apply. 

  

Jena Economic Research Papers 2014 - 034



 

37 

Appendix 1: Patent selection 

The selection of the relevant patents was done by combining IPC classes and keywords. The 

abstract and title of the patent document are searched for the keyword. The selection criteria 

for WP is based on the suggestions from the WIPO Green Inventory and own elaboration. For 

PV, we rely on a detailed elaboration on keywords and IPCs derived in Kalthaus (2016). The 

keywords and IPCs are grouped for specific technologies and fields to reduce the overlap with 

other adjacent technologies:  

 

 
IPC Class  Keyword combination 

Wind Power F03D% 
 

 

 

H02K   7/18 
B63B  35/00 
E04H  12/00  

(%wind% + (%turbine% | %power% | %mill% | %energ%)) 

 

 
 

 Photovoltaics H01L  21% 
H01L  31% 
C30B  15% 
 

((%monocrystalline_silicon% | %monocrystal_silicon% | %crystal_silicon% | 
%silicon_crystal% | %silicon_wafer% ) + (%photovoltai% | %solar% )) | 
%back_surface_passivation% | (%pyramid% + %etching% + %silicon% ) 

 C01B  33% 
C30B  15% 
C30B  29% 
H01L  21% 
H01L  31% 
 

((%polycrystalline_silicon% | %multicrystalline_silicon% | %poly_Si% | 
%polysilicon%) + (%photovoltai% | %solar% )) | (%ribbon% + (%photovoltai% | 
%solar% | %silicon% )) | (%Edge_defined_film_fed_growth% + %silicon%) | 
%Metal_wrap_through% | %Emitter_wrap_through% | %Ribbon_growth% 

 C23C  14% 
C23C  16% 
H01L  21% 
H01L  27% 
H01L  29% 
H01L  31% 
 

((%chemical_vapour_deposition% | %PECVD% | %Physical_vapour_deposition% | 
%PVD% | %solid_phase_crystallization% | %laser_crystallization% | 
%Nanocrystalline% | %microcrystalline%) + (%photovoltai% | %solar% | 
%silicon% )) | ((%tandem% | %amorphous_silicon% | %silicon_substrate% | 
%silicon_film%) + (%photovoltai% | %solar%)) | %Staebler_wronski% 

 C23C  14% 
C23C  16% 
H01L  21% 
H01L  25% 
H01L  27% 
H01L  29% 
H01L  31% 
 

((%Cadmium_Telluride% | %CdTe% | %Copper_Indium_diselenide% | % CIS % | 
%CuInSe% | %indium_tin_oxide% | %gallium_arsenide% | %GaAs% | 
%roll_to_roll% | %surface_textur% | %thin_film% | %thinfilm%) + 
(%photovoltai% | %solar%)) | %Copper_indium_gallium_diselenide% | 
%CuInGeSe% | %CIGS% | %Copper_zinc_tin_sulfide% | %CZTS% | %Kesterite% 

 C08K   3% 
C08G  61% 
H01B   1% 
H01G   9% 
H01L  21% 
H01L  31% 
H01L  51% 
H01M  14% 
 

((%Dye_sensiti% | %titanium_oxide% | %titanium_dioxide% | %TiO2% | 
%Organic% | %polymer%) + (%photovoltai% | %solar)) | %Gr_tzel% | %Graetzel% 
| %hybrid_solar_cell% 

 H01G   9% 
H01L  31% 
H01L  51% 
H01M  14% 
 

((%Quantum_dot% | %perovskite% | %organic_inorganic% | %Plasmon% | 
%Nanowire% | %nanoparticle% | %nanotube%)) + (%photovoltai% | %solar))   
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 H01L  21% 
H01L  25% 
H01L  27% 
H01L  31% 
H01R  13%  
H02N   6%  
H02S  20%   
H02S  30%   
B64G   1%  
E04D  13% 
 

((%anti_reflection% | %encapsulat% | %back_contact% | %buried_contact% | 
%bypass_diode% | %rear_surface_protection% | %back_sheet% | 
%building_integrat% | %mounting_system%) + (%photovoltai% | %solar)) | 
%solar_panel% | %photovoltaic_panel% | %solar_modul% | %solar_cell_modul% 
| %photovoltaic_modul% | %solar_cable% | %Photovoltaic_Wire% | 
%solar_array% | %photovoltaic_array% | %BIPV% | %solar_park% | 
(%spacecraft% + (%photovoltai% | %solar_cell%)) 

 B64G   1% 
C01B  33% 
C08K   3% 
C08G  61% 
C23C  14% 
C23C  16% 
C30B  29% 
C30B  15% 
E04D  13% 
F21S   9% 
G05F   1% 
H01B   1% 
H01G   9% 
H01L  21% 
H01L  25% 
H01L  27% 
H01L  29% 
H01L  31% 
H01L  51% 
H01M  10% 
H01M  14% 
H01R  13% 
H02J   7% 
H02M   7% 
H02N   6% 
H02S  99% 
H02S  20%   
H02S  30%   

(%photovoltai% | %solar_cell%) 
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Appendix 2: Correlations 

Table 6: Correlations Wind Power 

         ∆ Nodes Mean 

Degree 
TP  + SYS TP SYS DP Export 

Market 
∆ Oilprice ∆ Patents Team Size 

∆ Nodes --- 0.820*** 0.818*** 0.737*** 0.781*** 0.537*** 0.808*** 0.266 -0.285 0.646*** 

Mean Degree 0.000 --- 0.753*** 0.639*** 0.825*** 0.701*** 0.939*** 0.369** -0.244 0.841*** 

TP  + SYS 0.000 0.000 --- 0.982*** 0.455*** -0.003 -0.095 0.345** -0.360* 0.633*** 

TP  0.000 0.000 0.000 --- 0.276 -0.083 -0.235 0.325* -0.284 0.611*** 

SYS 0.000 0.000 0.006 0.108 --- 0.370** 0.618*** 0.229 -0.448** 0.505*** 

DP 0.003 0.000 0.987 0.637 0.028 --- 0.839*** 0.189 0.251 0.960*** 

Export Market 0.000 0.000 0.586 0.174 0.000 0.000 --- 0.097 -0.158 0.909*** 

∆ Oilprice 0.163 0.045 0.046 0.061 0.193 0.285 0.584 --- 0.057 0.402** 

∆ Patents 0.134 0.202 0.055 0.135 0.015 0.189 0.412 0.769 --- 0.025 

Team Size 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.028 0.897 --- 

Upper triangle: Pearson correlation coefficient, lower triangle: p-values. Sig. at *** 0.01, ** 0.05, * 0.1 level 

           Table 7: Correlations Photovoltaics   

         ∆ Nodes Mean 

Degree 
TP  + SYS TP SYS DP Export 

Market 
∆ Oilprice ∆ Patents Team Size 

∆ Nodes --- 0.633*** 0.450** 0.185 0.451** 0.711*** 0.740*** 0.216 -0.056 0.539*** 

Mean Degree 0.000 --- 0.510*** 0.170 0.555*** 0.878*** 0.847*** 0.358* -0.441** 0.666*** 

TP  + SYS 0.014 0.004 --- 0.731*** 0.625*** 0.349** 0.326* 0.169 -0.706*** 0.018 

TP  0.335 0.369 0.000 --- -0.075 -0.064 -0.127 0.170 -0.467** -0.213 

SYS 0.014 0.001 0.000 0.669 --- 0.584*** 0.622*** 0.053 -0.520*** 0.267 

DP 0.000 0.000 0.040 0.715 0.000 --- 0.956*** 0.287 -0.274 0.900*** 

Export Market 0.000 0.000 0.056 0.466 0.000 0.000 --- 0.247 -0.254 0.876*** 

∆ Oilprice 0.260 0.052 0.340 0.335 0.765 0.100 0.159 --- 0.057 0.402** 

∆ Patents 0.772 0.017 0.000 0.011 0.004 0.150 0.183 0.769 --- 0.025 

Team Size 0.003 0.000 0.924 0.258 0.154 0.000 0.000 0.028 0.897 --- 

Upper triangle: Pearson correlation coefficient, lower triangle: p-values. Sig. at *** 0.01, ** 0.05, * 0.1 level 
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Appendix 3: Lag structure 

Figure 5 shows for all four dependent variables overall model fit (AIC) and the effect of the 

respective policy instrument depending on different lag structures. For any given lag of the 

respective policy instrument, we perform regressions with all possible lag variations of the 

other instruments, thereby modifying the benchmark model 5 (tables 2-5). Positive coefficients 

are displayed with a ‘+’, negative ones with a ‘-’, and those insignificant with a ‘○’ (the 

significance threshold is a p-value ≤ 10%). For example, in the case of Δ Nodes in WP, we see 

that TP is almost always positive for lags of 0 and 1, regardless of the lags of the other 

variables. However, TP is always insignificant for lags of 2 or 3. Furthermore, the model fit 

seems to be slightly better for lag of 0 according to the AIC. 
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Figure 5: Sensitivity analysis of lag structures as variations of regression model 5.  
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